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Note 

Spin-Orbit interaction in Metals, 
Elementary Semiconductors, and Semiconductor Compounds 

The general analytic formulas for matrix elements of spin-orbit interaction in metals, 
elementary semiconductors, and binary semiconductor compounds which belongs to cubic 
crystal systems are obtained on the basis of Roothaan-Hartree-Fock atomic orbitals. 

1. INTR~OUCT10~ 

It is well known that spin-orbit interaction may have important consequences on 
the electronic energy bands of heavy elements and heavy element compounds with a 
crystal structure. If we are interested in obtaining precise band structure, those 
interactions must be considered [ 11. 

2. THEORY 

Following Weisz’s work 121, as modified by Bloom an Bergstresser [ 31, we can 
write the spin-orbit contribution to the pseudopotential Hamiltonian as 

(ki, v 1 W,,I kj, v’) = (ki X kj)o,,“,(-iAs coS(ki -k,i)r +AA sin(ki--kj)rly (1) 

where 

a” = (a, + A,)/2, a* = (a, -t&)/2, (2) 

are the symmetric and antisymmetric contributions to the spin-orbit Hamiltonian, o 
is the Pauli spin operator, v and v’ are spin indices, and ki, k,i are vectors from the 
reciprocal space (k, = k + gi ; kj = k + gj). 

Formula (1) is written for semiconductor compounds with zinc-blende structure. 
The sine and cosine terms in (1) are appropriate for the crystal structure factor of 
this lattice, where r = a/S (1, 1, 1) and a is the lattice constant. 

The A, and A, are contributions of the first and second element in the mentioned 
binary compounds 

a, = /d$‘(ki) Bb\‘(kj), 

AZ = afiB~‘(ki) Bz’(k,j), 
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where ,D is an adjustable parameter, and 01 is constrained such that the ratio of 
spin-orbit contribution for the atoms in binary compounds is the same as the 
spinorbit splitting ratio for free atoms [4]. 

We include only contributions from the outermost p-core states. The quantum 
number n has the values 2, 3, 4, 5 for compounds in the Si, Ge, Sn, and Pb rows, 
respectively. Contribution from inner core states or d-core states can be neglected [ 3 1. 

For elementary semiconductors Si, Ge, and a - Sn we can write, 

A” =A, =A*, AA = 0. (5) 

This formula is valid for metals also. In that case, the sine and cosine terms must be 
excluded because the geometrical structure factors of cubic metals are equal to one. 
Then, B:/(k) is defined by 

By/(k) = C jmj,(kr) R:/(r) r* dr, (6) 
0 

where R:/(r) is the radial part of the core wave function, i denotes the element of 
binary compound (i = 1, 2,), j, is a spherical Bessel function, while C is the 
normalization constant defined so that 

‘,‘y k-‘B;‘(k) = 1. (7) 

3. ANALYTIC FORMULAS 

Integrals defined in formulas (6) and (7) are usually solved numerically on the 
basis of Hartree-Fock-Slater-type orbitals tabulated in Herman-Skillman (HS) 141. 

However, these integrals can be solved analytically on the basis of the radial part 
of the core wave function obtained by the Roothaan-Hartree-Fock (RHF) 
method [ 5. 6 ] 

where N denotes the number of basis functions (Slater-type orbitals) which have the 
form 

xlp = [ (2n,,)!] -‘/2(2&p)nf~+ I’* rn’pp ‘e-c/f. (9) 

The parameters cnlp, nlpr &,,, and number N for each atom are given in [S, 61. In 
Table I, we give these parameters for the 3p(Zn) and 4p (Te) wave functions as an 
example. 
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TABLE I 

Parameters for the 3p (Zn) and 4p (Te) Radial 
Part Core Wave Functions” 

2 12.37110 -0.35894 2 
2 20.71820 -0.02867 2 
3 8.82555 -0.14269 3 
3 6.89964 0.64545 3 
3 4.13660 0.58274 4 
3 2.20119 0.02297 4 

5 
5 
< 

33.6 1480 -0.00925 
22.33970 -0.22003 
12.13790 0.23812 
10.60150 0.4269 1 
7.18478 -0.58604 
4.8847 I -0.62258 
2.91927 -0.02040 
1.87617 0.003 13 
1.22654 -0.001 18 

’ Reference [ 5 1. 

Using expansion (8) the integral in formula (6) can be represented in the form 

I -%j!(kr) R,,(r) r2 dr = 2 
0 

c,,,~[ (2n,,)! [ “*(~c$,)~/~J+ ‘I2 
p=, 

-cc 

X 
J 

j,&) r “/LJ+~,-~,~ d,-. 
0 

By means of the well-known relations between Bessel functions 

(10) 

j,(kr) = 4 $ r-“‘J,+ ,12(kr), (11) 

the integral on the right side of Eq. (10) can be found in the tables [ 71: 

j,(h) r"fp+ *e W dr = Fm 
0 

21 xl0 J,, ,,2(kr) r”l~+“2e-ll~r dr 

71 
=J- 

(k/Z>‘+ I” r(l + nip + 3) 

2k \/($ + k2)‘+“ipt3 I-(/ + ;) 

XF 

where F is the hypergeometric function and r is the Gamma Function. 
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In that way we obtained the analytic expression for integral (6) 

B,,(k) = c g c c,,,[(2n,,)!] --1’2(2&JQ+ “2 
p?il 

X 
r(l+ n@ + 3) F n,,+1+3 l-n,,-1 

<g, + k2)‘+“‘pf3 T(Z + ;> ( 2 1 2 J+$ p yki 3 
IP 1 

(13) 

where the constant C is defined from the relation 

,-I-fi $: 
z/+1 L GrpP,,Y I- 1’2(2w’~+ “2 jJ:,> :(:+31) . (14) 

py, IP 2 

Hypergeometric function 

F(a, b, c, z) = F n,P+21+3, l-n;- I,/+3 k2 
2’t;,+k2 (15) 

is absolutely convergent in the circle 

because appropriate conditions are satisfied [ 71: 

a+b-c= 
n@+l+ 3 

2 + 
l-n,,- 1 

2 
c=i++. (17) 

Integrals (13) in the k = 2x/a(O 0 0) point for the first few and important 
reciprocal lattice vectors, with 3 p and 4 p wave functions of Zn and Te, respectively, 
are calculated for cubic ZnTe and shown in Table II. Our results are compared with 
appropriate results obtained on the basis of numerical radial wave functions tabulated 
in the Herman-Skillman book [4]. 

Different analytic formulas for the matrix elements of the spin-orbit interaction are 
given by Bloom and Bergstresser [8]. They applied Slater-type approximation for the 
radial core wave functions of p-electron states (I = 1) in order to calculate integrals 
B,,(k) in formulas (3) and (4). These wave functions have the form 

R,, = c,r”e~“‘~‘m, (18) 

where r,,, is the location of the main maximum of R,,(r) and c, is the normalization 
constant. The Roothaan-Hartree-Fock approximation for the radial wave functions 
applied in our approach is more precise than function (18), because the orbital 
binding energies obtained with function (8) are lower than the respective energies 
obtained with (18) [4, 51. 
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TABLE 11 
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k = 2n/a(O 0 0) + 
reciprocal lattice 

vectors 
Zinc Tellurium 

(B,,) Pa,) 

Atomic 
Units units 

Our 
results HS” 

Our 
results HS” 

(000) 0 0 0 0 0 
(1 1 1) 0.948 0.64263 0.76102 0.59026 0.37170 
(2 0 0) 1.095 0.66482 0.81897 0.62239 0.40167 
(2 2 0) 1.549 0.6407 1 0.88603 0.61678 0.43885 
(3 1 1) 1.816 0.58477 0.86118 0.56440 0.42696 

Note. Integrals B,, and B,, for Zn and Te in the cubic ZnTe compound for the 
point k = 2rr/a(O 0 0) are calculated by means of formula (13) and compared with 
the results obtained on the basis of the radial part for the core wave functions (HS). 

’ Reference 14 I. 

In Bloom-Bergstresser’s analytic expressions the dependence of the B,,(k) integrals 
of the respective components in the crystal compound is neglected. They used the 
approximation 

B:,(k) -B:,(k) =B,,@) (19) 

in (3) and (4). The values of B,,(k) for the group IV atoms are used for compounds 
in the same row, or the average of the group IV values for skew compounds. 

4. EXAMPLE: BAND STRUCTURE OF ZNTE IN THE SYMMETRY POINTS 

For illustration we give results for energy bands of ZnTe in the points r(O 0 0), 
X( 1 0 0), and L(f f $) (in 2n/a units) from the first Brillouin zone obtained by means 
of WCPB pseudopotential 191. Our approach is based on the double expansion 
technique for the exact inclusion of the spin-orbit interaction influence on the band 
structure of ZnTe. In order to apply the double expansion technique it is necessary to 
solve an eigenvalue problem of the one electron pseudo-Hamiltonian without 
spinorbit interaction. For this, we use the Brust-Lowdin perturbation technique 
1101. With this technique the secular equation for the eigenvalues of order L can be 
reduced to solving a truncated secular equation of order N (N< L). In our example 
L = 89 and N= 51 provide necessary convergence of the solutions of the truncated 
secular equation. The eigenfunctions obtained in this way have been used for the 
formation of new trial functions. After that, new trial functions have been applied for 
solving the eigenvalue problem of the Hamiltonian with spinorbit term included. 

Electron energy levels for the valence and conduction bands in the points r, X, and 
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TABLE III 

ZnTe Band Structure in the Points I(0 0 0), X( 1 0 0), and 
L(f f f) (in 2n/a Units) Obtained in Our Approach 

Energy 
levels (eV) I- X L 

1 0 1.065113 0.782226 
2 10.953309 7.369872 7.455286 
3 11.121069 9.908073 10.590770 
4 11.126609 9.959153 10.693075 
5 13.419953 14.598116 14.177149 
6 16.898658 14.971985 17.566808 
7 17.020027 22.399764 17.624563 
8 17.025535 22.472072 20.119371 

L are given in Table III. These results are in accordance with the experimental 
arrangement of levels. 

In Table IV our results for the spinorbit splitting (eV) in the single group notation 
are compared with respective results from [ 91. These values were obtained with the 
spin-orbit parameter from [9], ,D = 0.0010. 

The big difference in the values of the spin-orbit splitting for the levels rlI, and 
L,, is because of the different accuracy of the methods compared. In [9] simple 
perturbation technique and very crude approximation for the radial wave fuctions 
was applied. 

In Table V the orbital binding enrgies for 3p and 4p states of Zn and Te, respec- 
tively (obtained by different methods) are compared. 

The Roothaan-Hartree-Fock method [5, 61 aplied in this work, gives more 
accurate results for the binding energies than Herman-Skillman method [4] (lower 
binding energies in Table V for the RHF method). 

TABLE IV 

Spin-Orbit Splitting (eV) in the 
Single Group Notation for Cubic ZnTe 

Our 
results WCPB” 

i-,5? 0.17 0.92 
L,,. 0.10 0.58 
X5,. 0.37 0.46 
r15‘ 0.13 0.16 
L,, 0.06 0.07 

L1 Reference [ 9 1. 
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TABLE V 

Binding Energy for 3p and 4p States of 
Zn and Te (in Atomic Units) 

Zn 

Te 

HS” RHFh RDF’ 

-3.3305 -3.8393 I -3.837162” 
-3.957g45* 

-4.4605 -4.95263 -4.836864” 
-5.308623* 

” Reference 14 j. 
h Reference 15 I. 

c Relativistic Dirac-Fock method 11 1 I. 
’ No * meansj = 4; * means./ = f, 

5. CONCLUDING REMARKS 

The formulas obtained in this paper considerably simplify the band structure 
calculations with the spin-orbit interaction included. In this manner the numerical 
integration using the large number of data for radial wave functions from the 
Herman-Skillman tables [4] is avoided. Our results for B,,(k) integrals are also more 
accurate because we use better approximation for the radial part of core wave 
functions. 
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